Letter

Effects of Mg composition on open circuit voltage of Cu$_2$O–Mg$_{x}$Zn$_{1-x}$O heterojunction solar cells

Ziqing Duan a, Aurelien Du Pasquier b, Yicheng Lu a,*, Yi Xu c, Eric Garfunkel c

a Department of Electrical and Computer Engineering, Rutgers University, 94 Brett Road, Piscataway, NJ 08854, USA
b Department of Materials Science and Engineering, Rutgers University, 671 US Highway 1, North Brunswick, NJ 08902, USA
c Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854, USA

A R T I C L E I N F O

Article history:
Received 26 May 2011
Received in revised form 13 September 2011
Accepted 17 September 2011
Available online 5 October 2011

Keywords:
Zinc oxide (ZnO)
Cuprorous oxide (Cu$_2$O)
Solar cells
Electrodeposition
MOCVD (metal-organic chemical vapor deposition)

A B S T R A C T

Mg$_{x}$Zn$_{1-x}$O ($0 \leq x \leq 0.13$) films grown by metal-organic chemical vapor deposition (MOCVD) were chosen as the n-type semiconductor layer forming a heterojunction with electrodeposited p-type cuprous oxide (Cu$_2$O) for photovoltaic applications in this study. We investigated the effects of Mg contents (x) on the performance of Ag-Cu$_2$O-Mg$_{x}$Zn$_{1-x}$O-fluorine-doped tin oxide (FTO)-glass heterojunction solar cells, where Ag and FTO are used as top and bottom electrodes, respectively. An enhancement of the open-circuit voltage (V_{OC}) with the increase of x, from 251 mV at $x=0$ to 570 mV at $x=10\%$, was observed. In order to understand how V_{OC} increases with Mg, the band alignment between Cu$_2$O and Mg$_{x}$Zn$_{1-x}$O was demonstrated using X-ray photoelectron spectroscopy (XPS) measurements. The result indicates that the conduction band of Mg$_{x}$Zn$_{1-x}$O moves closer to the vacuum level with increasing of x, leading to a decrease of the conduction band offset between Mg$_{x}$Zn$_{1-x}$O and Cu$_2$O and hence an enhancement of theoretical V_{OC}. Another improvement with the increase of Mg% was realized on the shunt resistance (R_{sh}) of devices. With the improved V_{OC} and R_{sh}, a relatively high solar power conversion efficiency ($\eta_{AM1.5} = 0.71\%$) was obtained on the Mg$_{x}$Zn$_{1-x}$O ($x=10\%$) based solar cell.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

ZnO, a wide bandgap semiconductor (~ 3.3 eV at room temperature), is also a promising photovoltaic (PV) material when used as an electron acceptor and conductor [1]. It has been demonstrated that n-type ZnO and p-type Cu$_2$O form heterojunction solar cells, with Cu$_2$O as the photon absorber [2,3]. A solar conversion efficiency of $\sim 2\%$ was recently reported for Cu$_2$O–ZnO solar cells [2]; however, it is still one order of magnitude lower than the theoretical limit of Cu$_2$O solar cells (\sim 20%) [4]. The low solar conversion efficiency of Cu$_2$O–ZnO solar cells was attributed to the high defect density in polycrystalline Cu$_2$O thin films and low quality of the Cu$_2$O–ZnO heterojunction resulted from non-optimal deposition, and inefficient minority carrier transport caused by the planar interface structure [5–9]. Various strategies have been used to improve the solar conversion efficiency (η) of Cu$_2$O–ZnO heterojunctions, such as using post-deposition cyanide treatment [5], improving the electrical properties of Cu$_2$O films by optimizing deposition conditions [6,3], refining deposition conditions of the ZnO layers [7,8] and applying a nanowire architecture to the Cu$_2$O–ZnO interface [9]. In this paper, we report another method to increase the efficiency of Cu$_2$O–ZnO solar cells using the ternary alloy Mg$_{x}$Zn$_{1-x}$O to replace the ZnO, thus, increasing the open circuit voltage V_{OC}.

Mg$_{x}$Zn$_{1-x}$O, which is formed by alloying MgO with ZnO, has been developed as a promising semiconductor for barrier layers in ZnO/Mg$_{x}$Zn$_{1-x}$O quantum wells or superlattices due to its wider bandgap (increasing from 3.3 eV for ZnO up to 4.0 eV as $x = 0.33$ for the direct energy bandgap) [10,11]. It has been observed that the conduction band minimum (CBM) of Mg$_{x}$Zn$_{1-x}$O moves closer to the vacuum level with increasing Mg composition x when it forms the heterojunction with other semiconductors such as ZnO [11] and CdS [12]. Olson et al. also found the same trend after they measured the work function of Mg$_{x}$Zn$_{1-x}$O films deposited on ITO and saw a decreased work function with increasing Mg composition [13]. They reported that the moving of Mg$_{x}$Zn$_{1-x}$O CBM led to a reduced conduction band offset and an enhanced V_{OC} in Mg$_{x}$Zn$_{1-x}$O-P3HT hybrid solar cells. The Mg$_{x}$Zn$_{1-x}$O film has also been used as a window layer in Cu(In, Ga)Se$_2$ solar cells to tune the conduction band offset for higher V_{OC} and efficiency [14,15]. However, there has been no report on the energy band alignment of Mg$_{x}$Zn$_{1-x}$O in Mg$_{x}$Zn$_{1-x}$O–Cu$_2$O heterojunction. In this paper, we report the band alignment between Mg$_{x}$Zn$_{1-x}$O and Cu$_2$O determined using X-ray photoelectron spectroscopy.

* Corresponding author.
E-mail address: ylu@rci.rutgers.edu (Y. Lu).
(XPS), from which we investigate the Mg composition effect on the performance of Mg$_x$Zn$_{1-x}$O–Cu$_2$O heterojunction solar cells.

Cu$_2$O thin films have been grown by various methods including the thermal oxidation of Cu foils [16], metal-organic chemical vapor deposition (MOCVD) [17], sputtering [18] and electrochemical deposition [19]. Among them, the electrodeposition is the attractive technique because of its ability to use low-cost equipment and chemicals, large area coating and precise control of deposition parameters. In design of the cell structure, the deposition sequence of p-Cu$_2$O on ZnO films is chosen based on two considerations: first, p-Cu$_2$O on ZnO shows smaller lattice mismatch than the inverse structure and hence lower density of interface defects and a better solar cell performance [18]; second, this deposition sequence can avoid formation of the impurity phase CuO at the interface that usually occurs in the inverse sequence.

2. Experimental

Mg$_x$Zn$_{1-x}$O films were grown on 1" × 1" fluorine-doped tin oxide (FTO)/glass substrates (Pilkington TEC7) by the MOCVD technique at temperature of ~520 °C. Diethylzinc (DEZn) and bis(methylcyclopentadienyl)magnesium (MCp$_2$Mg) were chosen as the Zn and Mg precursors, respectively. Oxygen gas was used as the oxidizer and injected into the chamber with a separate line to avoid the gas phase reactions. The Mg composition (0 ≤ x ≤ 0.13) was tuned by changing the precursor flow rate ratio (MCp$_2$Mg/DEZn). All Mg$_x$Zn$_{1-x}$O films were kept ~600 nm thick. Cu$_2$O films were electrodeposited from aqueous solutions of CuSO$_4$ (0.4 mol L$^{-1}$) and lactic acid (3 mol L$^{-1}$), with the pH value ~11–12 controlled by NaOH. The working electrode substrates were Mg$_x$Zn$_{1-x}$O/FTO/glass. The counter electrode was a Cu foil. Electrodeposition was performed at a constant voltage of ~0.4 V with the bath temperature of 90 °C, under which a growth rate of ~0.2 μm/min was obtained. The thickness of ~4.2–4.5 μm was controlled for all Cu$_2$O films. Metal contacts (Ag) were then deposited by a Hummer Anatech 6.6 argon plasma sputtering system. Devices were annealed for 15 min at 200 °C in air. Film thickness measurements were performed with a Veeco D150 stylus profilometer. X-ray diffraction (XRD) patterns were acquired on a Siemens D500 X-ray diffractometer. A Hitachi (S-800) field emission scanning electron microscopy (FESEM) was used to check the morphology of Cu$_2$O and Mg$_x$Zn$_{1-x}$O films. Hall measurements on the Van der Pauw patterns were conducted to characterize the electrical properties of Cu$_2$O and Mg$_x$Zn$_{1-x}$O films. The room temperature transmission spectra of Mg$_x$Zn$_{1-x}$O films were measured using a UV/vis spectrophotometer (BECKMAN DU 530). The XPS measurements were performed on a XPS spectrometer (Thermo Scientific Inc. K-Alpha) with a monochromatized Al Kα (1486.6 eV) source. J–V testing was conducted with an EG&G 273A potentiostat using the full spectrum of a xenon light source shaped with a AM1.5 filter and adjusted to 100 mW/cm2 with a Newport thermopile. AM1.5 is

![Fig. 1. (a) Plots of a^2 versus $hν$ for Mg$_x$Zn$_{1-x}$O (0 ≤ x ≤ 0.13) films; FESEM images of as-grown Mg$_x$Zn$_{1-x}$O layers with (b) x=0 and (c) x=0.10.](image-url)
defined as the incident solar flux at the Earth’s surface at incident angle of 37° to the equator, and 100 mW/cm2 is the power of 1 Sun irradiation under those conditions.

3. Results and discussion

The transmission spectra of Mg$_{x}$Zn$_{1-x}$O films were measured at room temperature with a UV–visible spectrophotometer. A transmittance of > 80% in the visible light region is observed on all films, which allows most of the visible light transmitted into the light-absorber layer (Cu$_2$O) of the solar cell. The bandgap values of Mg$_{x}$Zn$_{1-x}$O films are determined by plotting the absorption coefficient α as a function of photon energy ($h\nu$) and fitting these curves to the equation $\alpha = A^* (h\nu - E_g)^{1/2}$, where A^* is a frequency-independent constant, as shown in Fig. 1a. Fig. 1b and c shows the FESEM (field emission scanning electron microscopy) images of as-grown Mg$_{x}$Zn$_{1-x}$O with $x=0$ and $x=0.1$, respectively. It is observed that the Mg$_{x}$Zn$_{1-x}$O surface morphology evolves with increasing of the Mg composition x. During MOCVD growth, nanostructured ZnO is formed at temperature 400–500 °C [20], resulting from the polarity of ZnO along <0001> direction. This leads to a high surface energy on {0001} planes [21] and hence a fast growth rate along the c-axis [22]. With the Mg incorporation into ZnO, however, this polarity is weakened, leading to the reduction of the anisotropy of surface energy among all ZnO planes [23]. The growth rates along a- and b-axis would increase, while that along the c-axis decreases. As a result, the morphology of Mg$_{x}$Zn$_{1-x}$O changes from sharp nanotip arrays to dense columns with increasing x, as shown in Fig. 1b and c.

Fig. 2a shows the plot of the absorption coefficient α^2 as a function of photon energy ($h\nu$), from which the bandgap of Cu$_2$O is determined to be 2.0 eV by extrapolating the adsorption edge. Fig. 2b shows the dense Cu$_2$O film (~4.5 μm thick) deposited on Mg$_{x}$Zn$_{1-x}$O–FTO-glass substrates, taken by FESEM. The XRD pattern of Cu$_2$O film (Fig. 2c) shows the pure Cu$_2$O phase. None of the other phases, such as CuO or Cu are detected although these two impurities could easily be incorporated into Cu$_2$O during the deposition process [3]. XPS was used to verify the purity of Cu$_2$O, as shown in Fig. 2d. The Cu 2p$_{3/2}$ peak is fit into a single peak at a binding energy of 932.42 eV with a FWHM of 1.27 eV as known from literature values for Cu(I) in Cu$_2$O [24]. No sub-peak at a binding energy of 933.73 eV, which is attributed to the Cu(II) in CuO, is observed. Moreover, the shake-up satellites peaks that usually appear in CuO and at a binding energy 940 eV–945 eV [25] are not seen in this spectrum. Another possible impurity, Cu, is not easy to quantify by XPS because the Cu 2p$_{3/2}$ peak binding energies of Cu(0) and Cu(I) are very close (~0.1 eV difference). But these two states can be distinguished from the Cu LMM-2 Auger transition peak positions, which also appear in photoemission spectra; the peak positions are 568 eV for Cu (metal) and 570 eV for Cu$_2$O [26]. In our sample, a broad peak centered at 570 eV was found. Although a small peak at 568 eV is possibly buried in the broad peak, it appears that the amount of Cu is negligible.

The current density–voltage (J–V) curves of the heterojunction devices are shown in Fig. 3 and various parameters of the solar cells examined are listed in Table 1. As expected, the V_{OC} value increases with increasing Mg content, from 251 mV for the pure

![Fig. 2](image-url). (a) A plot of α^2 versus photon energy ($h\nu$) for the Cu$_2$O film; (b) an FESEM image of the Cu$_2$O film deposited on Mg$_{0.1}$Zn$_{0.9}$O–FTO films; (c) a typical XRD pattern of the Cu$_2$O film; (d) the Cu 2p$_{3/2}$ XPS spectrum from a Cu$_2$O film.
ZnO-based device, up to 575 mV for the Mg0.1Zn0.9O-based one. In order to understand this enhancement of V_{OC}, we determined the band alignment of Cu2O and Mg0.1Zn0.9O using the XPS method proposed by Kraut et al. [27] In this method, the valence band offset (VBO) ΔE_V at the Cu2O–Mg0.1Zn0.9O heterojunction interface is given by the following equation:

$$\Delta E_V = (E_{V_{Zn1-O}} - E_{V_{Mg0.1Zn0.9O}}) - (E_{V_{Cu2O}} - E_{Cu2O})$$

where $E_{V_{Zn1-O}}$ refers the binding energy of core level “A” in the sample “B”, $E_{V_{Cu2O}}$ refers the valence band maximum (VBM) and E_{Cu2O} (i) represents the binding energy of core level “A” in the sample “B” at the interface. Two heterojunctions of Cu2O–ZnO and Cu2O–Mg0.1Zn0.9O were chosen for the XPS measurement. Eq. 4a shows the XPS spectra drawn from the Cu2O–ZnO heterojunction. The Cu2O–Mg0.1Zn0.9O spectra are not shown as they are almost the same as that of Cu2O–ZnO with slightly different binding energy separation values. Based on the XPS data, the corresponding band alignments of Cu2O–ZnO and Cu2O–Mg0.1Zn0.9O heterojunctions are schematically drawn as Fig. 4b. From that, we can see the VBOs for Cu2O–ZnO and Cu2O–Mg0.1Zn0.9O are 2.73 and 2.27 eV, respectively. The conduction band offsets (CBOs) are determined to be 1.47 eV for Cu2O–ZnO and 1.27 eV for Cu2O–Mg0.1Zn0.9O. The 0.2 eV difference moves the conduction band of Mg0.1Zn0.9O closer to the vacuum level compared to ZnO; we assume that this change in conduction band edge is responsible for the enhancement of V_{OC}. It is difficult to determine the theoretical V_{OC} from this band alignment without knowing the built-in potential V_{bi} determined by the effective work function difference between p and n semiconductors. Assuming that the Fermi level E_F in n-Mg0.1Zn0.9O is close to E_F in n-Mg0.1Zn0.9O, and E_F in p-Cu2O is close to E_F (VBM in p-Cu2O) due to the high doping level in both n and p materials, the energy difference between E_F and E_F would be approximately equal to the V_{bi}, i.e. the upper limit of V_{OC}. With this assumption, the upper limit of theoretical V_{OC} is estimated to be 530 mV for Cu2O–ZnO and 730 mV for Cu2O–Mg0.1Zn0.9O, respectively.

As shown in the equivalent circuit of the solar cell in the inset of Fig. 3, the low shunt resistance (R_{sh}) could degrade V_{OC} significantly. R_{sh} is generally caused by parallel high-conductivity paths (PHCPs) through the solar cell, or on the edges of the cell. In our case, the interface defects and grain boundaries of both polycrystalline films in the space charge region (SCR) of the heterojunction could act as PHCPs, thus contributing to the R_{sh}. As shown in Table 1, R_{sh} value increases with increasing Mg concentration, from 189 Ω cm2 for ZnO to 777 Ω cm2 for Mg0.1Zn0.9O, indicate a decrease of the PHCPs with increasing Mg. In addition to the defects contribution, the surface morphology also impacts the PHCP. Figs. 1b and 1c show different surface morphologies between Mg0.1Zn0.9O and Cu2O. The Cu2O–ZnO heterojunction have a larger effective junction area than that of the Cu2O–Mg0.1Zn0.9O cell, due to the nanorod-like surface of ZnO in comparison to the relatively smooth surface of Mg0.1Zn0.9O. A larger junction area is favorable for generating more electron/hole pairs, hence a higher photocurrent; however, it would concomitantly possesses more interface defects and grain boundaries. As shown in Table 1, the Cu2O–ZnO cell has lower R_{sh} due to higher PHCPs than that of Cu2O–Mg0.1Zn0.9O. The lower R_{sh} in Cu2O–ZnO degrades V_{OC} values (a deviation of 279 mV from the real V_{OC} to the theoretical one) more than that of Cu2O–Mg0.1Zn0.9O (a deviation of 155 mV).

Unlike the V_{OC} and R_{sh}, the short circuit current density J_{SC} stops being improved and starts to decrease as the Mg percentage increases to over 4%. The resistivity, ρ, of Mg0.1Zn0.9O films increases with Mg content (x) from ~4 Ω cm ($x=0$) to ~63 Ω cm for ($x=0.1$), resulting in increasing in the series resistance R_s (Table 1). With the improved V_{OC} and R_{sh}, the solar conversion efficiency η of devices keep increasing with the increase of Mg content (x) until $x=0.1$. The highest solar conversion efficiency was obtained on the Mg0.1Zn0.9O sample, $\eta_{AM1.5}=0.71\%$, with the $J_{SC}=3.0$ mA/cm2 and $V_{OC}=575$ mV.

A solar cell with a higher Mg content of 13% was also fabricated. However, the electrodeposition of Cu2O became difficult with a small deposition rate and poor control of film uniformity. The reason could be attributed to the rougher surface morphology and higher resistivity of Mg0.12Zn0.88O films ($\rho \approx 78$ Ω cm) in comparison with other Mg concentration (x ≤ 0.1) films. As consequence, the thickness of as-deposited Cu2O film was low (~2.5 μm), resulted in lower J_{SC} and deteriorated solar cell performances as shown in Fig. 3.

Table 1

<table>
<thead>
<tr>
<th>% Mg</th>
<th>η (%)</th>
<th>FF</th>
<th>J_{SC} (mA/cm2)</th>
<th>V_{OC} (mV)</th>
<th>R_s (Ω cm2)</th>
<th>R_{sh} (Ω cm2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.21</td>
<td>0.34</td>
<td>2.38</td>
<td>251</td>
<td>60</td>
<td>189</td>
</tr>
<tr>
<td>4</td>
<td>0.47</td>
<td>0.34</td>
<td>3.44</td>
<td>390</td>
<td>64</td>
<td>223</td>
</tr>
<tr>
<td>6</td>
<td>0.57</td>
<td>0.35</td>
<td>3.30</td>
<td>488</td>
<td>91</td>
<td>350</td>
</tr>
<tr>
<td>10</td>
<td>0.71</td>
<td>0.42</td>
<td>3.00</td>
<td>575</td>
<td>95</td>
<td>677</td>
</tr>
</tbody>
</table>

4. Conclusion

In summary, Cu2O–Mg0.1Zn0.9O heterojunction solar cells were fabricated on FTO/glass substrates. The effects of Mg composition in Mg0.1Zn0.9O on the open-circuit voltage of the solar cells were investigated. V_{OC} and $\eta_{AM1.5}$ were enhanced with increasing of Mg content in the Mg0.1Zn0.9O (0 ≤ x ≤ 0.1). The solar conversion efficiency $\eta_{AM1.5}=0.71\%$, with $J_{SC}=3.0$ mA/cm2 and $V_{OC}=575$ mV were obtained in the Cu2O–Mg0.1Zn0.9O cell. Further increasing of Mg incorporation (> 10%) would increase the resistivity of Mg0.1Zn0.9O films and degrade the quality of Cu2O films made by the electrodeposition, therefore, result in poor cell performance. In order to understand the Mg effect on the enhanced V_{OC}, the band alignment...
of Cu₂O–MgₓZn₁₋ₓO heterojunction was measured by XPS. It was found that Mg incorporation into ZnO reduced the conduction band offset between MgₓZn₁₋ₓO and Cu₂O, resulting in an increase of V_OC. Furthermore, the Mg incorporation (0 ≤ x ≤ 0.1) increased the R_sh, correspondingly improves V_OC value.

Acknowledgements

YL and ZD acknowledge the partial support of the AFOSR DCT grant (FA9550-08-01-0452) and the NSF grant (ECCS-1002178). ADP appreciates the funding from Rutgers TCF and IAMDN. EG and YX acknowledge the support of the NSF.

References

